Abelian returns in Sturmian words

S. Puzynina
jointly with L. Q. Zamboni
Periodicity

Σ – alphabet
Σ* – finite words over Σ
Σω – (right) infinite words over Σ

A word w is periodic, if there exists T such that $w^n + T = w^n$ for every n.

The subword complexity of a word is the function $f(n)$ defined as the number of its factors of length n.

Sturmian words are infinite words having the smallest subword complexity among aperiodic words, for Sturmian words $f(n) = n + 1$.

$w \in \Sigma^\omega$ is recurrent if each of its factors occurs infinitely many times in w.

$F(w)$: the set of factors of a finite or infinite word w.

S. Puzynina jointly with L. Q. Zamboni Abelian returns in Sturmian words
Periodicity

Σ – alphabet
Σ* – finite words over Σ
Σω – (right) infinite words over Σ

- A word w is periodic, if there exists T such that $w_{n+T} = w_n$ for every n.

The subword complexity of a word is the function $f(n)$ defined as the number of its factors of length n.

Sturmian words are infinite words having the smallest subword complexity among aperiodic words, for Sturmian words $f(n) = n + 1$.

$w \in \Sigma^\omega$ is recurrent if each of its factors occurs infinitely many times in w.

$F(w)$: the set of factors of a finite or infinite word w.
Periodicity

Σ – alphabet
Σ* – finite words over Σ
Σω – (right) infinite words over Σ

- A word \(w \) is **periodic**, if there exists \(T \) such that \(w_{n+T} = w_n \) for every \(n \).

- The **subword complexity** of a word is the function \(f(n) \) defined as the number of its factors of length \(n \).

- Sturmian words are infinite words having the smallest subword complexity among aperiodic words, for Sturmian words \(f(n) = n + 1 \).
Periodicity

Σ – alphabet
Σ^* – finite words over Σ
Σ^ω – (right) infinite words over Σ

- A word w is periodic, if there exists T such that $w_{n+T} = w_n$ for every n.

- The subword complexity of a word is the function $f(n)$ defined as the number of its factors of length n.

- Sturmian words are infinite words having the smallest subword complexity among aperiodic words, for Sturmian words $f(n) = n + 1$.

- $w \in \Sigma^\omega$ is recurrent if each of its factors occurs infinitely many times in w.
Periodicity

Σ – alphabet
Σ^* – finite words over Σ
Σ^ω – (right) infinite words over Σ

- A word w is **periodic**, if there exists T such that $w_{n+T} = w_n$ for every n.

- The **subword complexity** of a word is the function $f(n)$ defined as the number of its factors of length n.

- Sturmian words are infinite words having the smallest subword complexity among aperiodic words, for Sturmian words $f(n) = n + 1$.

- $w \in \Sigma^\omega$ is **recurrent** if each of its factors occurs infinitely many times in w.

- $F(w)$: the set of factors of a finite or infinite word w
Definition

\(w = w_1 w_2 \ldots \) a recurrent infinite word, \(u \in F(w) \),

let \(n_1 < n_2 < \ldots \) be all integers \(n_i \) such that \(u = w_{n_i} \ldots w_{n_{i+1}} + |u| - 1 \)

\(w_{n_i} \ldots w_{n_{i+1}} - 1 \) is a return word (or briefly return) of \(u \) in \(w \)
Definition

\[w = w_1 w_2 \ldots \text{ a recurrent infinite word, } u \in F(w), \]
\[\text{let } n_1 < n_2 < \ldots \text{ be all integers } n_i \text{ such that } u = w_{n_i} \ldots w_{n_i+|u|-1} \]
\[w_{n_i} \ldots w_{n_i+1-1} \text{ is a return word (or briefly return) of } u \text{ in } w \]

- introduced independently by F. Durand, C. Holton and L. Q. Zamboni, 1998, and used for a characterization of primitive substitutive sequences
- and then for different problems of combinatorics on words, symbolic dynamical systems and number theory (L. Vuillon, J. Justin, J.-P. Allouche, J. D. Davinson, M. Queffélec, I. Fagnot, J. Cassaigne...)

S. Puzynina jointly with L. Q. Zamboni
Abelian returns in Sturmian words
An infinite word has k returns, if each of its factors has k returns.

A characterization of Sturmian words via return words:

Theorem (L. Vuillon, J. Justin, 2000–2001)

A recurrent infinite word has two returns if and only if it is Sturmian.
Characterization of periodicity via return words:

Proposition (L. Vuillon, 2001)

A recurrent infinite word is ultimately periodic if and only if there exists a factor having exactly one return word.
Abelian returns

$u \in \Sigma^*$, $a \in \Sigma$, $|u|_a$ – the number of occurrences of the letter a in u

$u, v \in \Sigma^*$ are abelian equivalent if $|u|_a = |v|_a$ for all $a \in \Sigma$
Abelian returns

\(u \in \Sigma^*, \ a \in \Sigma, \ |u|_a - \text{the number of occurrences of the letter } a \text{ in } u\)

\(u, v \in \Sigma^* \text{ are abelian equivalent if } |u|_a = |v|_a \text{ for all } a \in \Sigma\)

Definition

\(w \text{ an infinite recurrent word, } u \in F(w), \ n_1 < n_2 < \ldots \text{ all integers } n_i \text{ such that } w_{n_i} \ldots w_{n_i+|u|-1} \approx^{ab} u\)

\(w_{n_i} \ldots w_{n_i+1-1} \) is an abelian return word (or briefly abelian return) of \(u\) in \(w\)
Abelian returns

\(u \in \Sigma^*, \, a \in \Sigma, \, |u|_a \) – the number of occurrences of the letter \(a \) in \(u \)

\(u, v \in \Sigma^* \) are abelian equivalent if \(|u|_a = |v|_a \) for all \(a \in \Sigma \)

Definition

\(w \) an infinite recurrent word, \(u \in F(w) \),
\(n_1 < n_2 < \ldots \) all integers \(n_i \) such that \(w_{n_i} \ldots w_{n_i+|u|-1} \approx^{ab} u \)

\(w_{n_i} \ldots w_{n_i+1-1} \) is an abelian return word (or briefly abelian return) of \(u \) in \(w \)

\(u \) has \(k \) abelian returns in \(w \), if the set of abelian returns of \(u \) consists of \(k \) abelian classes

I. e., we take

- factors up to abelian equivalence
- return words up to abelian equivalence
Example: the Thue-Morse word

the Thue-Morse word

\[t = 0110100110010110 \ldots \]

Consider abelian returns of its factor 01:
Example: the Thue-Morse word

\[t = 0110100110010110 \ldots \]

Consider abelian returns of its factor 01:

- 0 ab. ret. 0
- 10 ab. ret. 01
Example: the Thue-Morse word

$t = 0110100110010110 \ldots$

Consider abelian returns of its factor 01: symmetrically

\[
\begin{array}{ccc}
0 & \text{ab. ret. 0} & 0 & \text{ab. ret. 1} \\
01 & \text{ab. ret. 01} & 10 & \text{ab. ret. 10}
\end{array}
\]
Example: the Thue-Morse word

\[t = 0110100110010110 \ldots \]

Consider abelian returns of its factor 01:

\[
\begin{align*}
0 & \quad \text{ab. ret. 0} & 0 & \quad \text{ab. ret. 1} \\
01 & \quad \text{symmetrically} \quad 10 & \quad 01 & \quad \text{ab. ret. 10} \\
10 & \quad \text{ab. ret. 01} & 01 & \quad \text{ab. ret. 10} \\
\end{align*}
\]

two abelian returns: 0, 1 and 01 $\sim^{ab} 10$.

S. Puzynina jointly with L. Q. Zamboni

Abelian returns in Sturmian words
Main result

A characterization of Sturmian words via the abelian returns:

Theorem

An aperiodic recurrent infinite word is Sturmian if and only if each of its factors has two or three abelian returns.
A characterization of Sturmian words via the abelian returns:

Theorem

An aperiodic recurrent infinite word is Sturmian if and only if each of its factors has two or three abelian returns.

Remind a characterization by Vuillon:
Sturmian \iff each factor has two (normal) returns
Idea of proof

Sturmian \Rightarrow two or three returns

- $w \in \{0, 1\}^q$ balanced word with $|w|_1 = p$, $\gcd(p, q) = 1$.

S. Puzynina jointly with L. Q. Zamboni

Abelian returns in Sturmian words
Idea of proof

Sturmian \Rightarrow two or three returns

- $w \in \{0, 1\}^q$ balanced word with $|w|_1 = p$, $\gcd(p, q) = 1$.
- The shift $\sigma : \{0, 1\}^q \rightarrow \{0, 1\}^q$: $\sigma(w_0 \ldots w_{q-1}) = w_1 \ldots w_{q-1}w_0$.

Idea of proof

Sturmian ⇒ two or three returns

- \(w \in \{0, 1\}^q \) balanced word with \(|w|_1 = p, \gcd(p, q) = 1 \).
- the *shift* \(\sigma : \{0, 1\}^q \to \{0, 1\}^q \):
 \[
 \sigma(w_0 \ldots w_{q-1}) = w_1 \ldots w_{q-1}w_0.
 \]
- the lexicographic ordering of \(\{\sigma^i(w) : 0 \leq i < q\} \):
 \[
 w(0) <_L w(1) <_L \cdots <_L w(q-1)
 \]

Lexicographic array \(A[w] \): \(q \times q \) matrix whose \(i \)th row is \(w(i) \)
Idea of proof

Sturmian \(\Rightarrow \) two or three returns

- \(w \in \{0, 1\}^q \) balanced word with \(|w|_1 = p, \gcd(p, q) = 1 \).
- the *shift* \(\sigma : \{0, 1\}^q \rightarrow \{0, 1\}^q \):
 \[
 \sigma(w_0 \ldots w_{q-1}) = w_1 \ldots w_{q-1}w_0.
 \]
- the lexicographic ordering of \(\{ \sigma^i(w) : 0 \leq i < q \} \):
 \[
 w(0) <_L w(1) <_L \cdots <_L w(q-1)
 \]

Lexicographic array \(A[w] \): \(q \times q \) matrix whose \(i \)th row is \(w(i) \)

- \(|\text{pref}_j(w(i))|_1 \leq |\text{pref}_j(w(i+1))|_1 \) for all \(0 \leq i \leq q - 2 \), \(0 \leq j \leq q - 1 \)
Idea of proof

Sturmian \(\Rightarrow\) two or three returns

- \(w \in \{0, 1\}^q\) balanced word with \(|w|_1 = p, \gcd(p, q) = 1\).
- the shift \(\sigma : \{0, 1\}^q \to \{0, 1\}^q\):
 \(\sigma(w_0 \ldots w_{q-1}) = w_1 \ldots w_{q-1}w_0\).
- the lexicographic ordering of \(\{\sigma^i(w) : 0 \leq i < q\}\):
 \(w(0) <_L w(1) <_L \cdots <_L w(q-1)\)

Lexicographic array \(A[w] : q \times q\) matrix whose \(i\)th row is \(w(i)\)

- \(|\text{pref}_j(w(i))|_1 \leq |\text{pref}_j(w(i+1))|_1\) for all \(0 \leq i \leq q - 2, 0 \leq j \leq q - 1\)
- \(j\)-th column of \(A\) is \(\sigma^{jp}u\), where \(u = 0^{q-p}1^p\)
Example

Consider a balanced word $w = 0101001$.
Idea of proof

Example

Consider a balanced word \(w = 0101001 \).

The lexicographic ordering of \(\{\sigma^i(w) | i = 0, \ldots, 6\} \):

\[
0010101 <_L 0100101 <_L 0101001 <_L 0101010 < \\
<_L 1001010 <_L 1010010 <_L 1010100,
\]
Idea of proof

Example

Consider a balanced word \(w = 0101001 \).

The lexicographic ordering of \(\{\sigma^i(w)|i = 0, \ldots, 6\} \):

\[
0010101 <_L 0100101 <_L 0101001 <_L 0101010 < \]
\[
<_L 1001010 <_L 1010010 <_L 1010100,
\]

The lexicographic array:

\[
A[w] = \begin{pmatrix}
0 & 0 & 1 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 1 & 0 & 0 & 1 \\
0 & 1 & 0 & 1 & 0 & 1 & 0 \\
1 & 0 & 0 & 1 & 0 & 1 & 0 \\
1 & 0 & 1 & 0 & 0 & 1 & 0 \\
1 & 0 & 1 & 0 & 1 & 0 & 0
\end{pmatrix}
\]
Idea of proof

two or three returns \Rightarrow Sturmian

considering abelian returns to factors of special type and restricting
the form of words (quite technical)
Abelian returns of factors of a Sturmian word are either letters or of the form aBb, where $a \neq b$ are letters, and B is a bispecial factor.
Abelian returns of factors of a Sturmian word are either letters or of the form aBb, where $a \neq b$ are letters, and B is a bispecial factor.

In a Sturmian word for each length $l \geq 2$ there exists at most one abelian return of length l.

A factor of a Sturmian word has two abelian returns if and only if it is singular. A factor of a Sturmian word is called singular if it is the only factor in its abelian class.

If a factor of a Sturmian word has three abelian returns of lengths $l_1 \leq l_2 < l_3$, then $l_3 = l_1 + l_2$.

S. Puzynina jointly with L. Q. Zamboni
Abelian returns of factors of a Sturmian word are either letters or of the form aBb, where $a \neq b$ are letters, and B is a bispecial factor.

In a Sturmian word for each length $l \geq 2$ there exists at most one abelian return of length l.

A factor of a Sturmian word has two abelian returns if and only if it is singular.

A factor of a Sturmian word is called singular if it is the only factor in its abelian class.
Abelian returns of factors of a Sturmian word are either letters or of the form aBb, where $a \neq b$ are letters, and B is a bispecial factor.

In a Sturmian word for each length $l \geq 2$ there exists at most one abelian return of length l.

A factor of a Sturmian word has two abelian returns if and only if it is singular.

A factor of a Sturmian word is called singular if it is the only factor in its abelian class.

If a factor of a Sturmian word has three abelian returns of lengths $l_1 \leq l_2 < l_3$, then $l_3 = l_1 + l_2$.
A simple sufficient condition for periodicity via abelian returns:

Lemma

Let $|\Sigma| = k$. If each factor of a recurrent infinite word over the alphabet Σ has at most k abelian returns, then the word is periodic.

Remark: not necessary condition for periodicity!
Remind a characterization of periodicity by L. Vuillon, 2001:

periodic \iff there exists a factor having exactly one return word
Remind a characterization of periodicity by L. Vuillon, 2001:

\[\text{periodic} \iff \text{there exists a factor having exactly one return word} \]

No similar characterization of periodicity in terms of abelian returns exist.

Moreover, in the case of abelian returns it does not hold in both directions.
Remind a characterization of periodicity by L. Vuillon, 2001:

\[
\text{periodic } \iff \text{there exists a factor having exactly one return word}
\]

No similar characterization of periodicity in terms of abelian returns exist.

Moreover, in the case of abelian returns it does not hold in both directions.

\[
\exists \text{ factor having one abelian return } \not\Rightarrow \text{periodicity}
\]

Example: an infinite aperiodic word in \(\{110010, 110100\}\omega\)
the factor 11 has one abelian return 110010 \(\approx_{ab} 110100\)
Remind a characterization of periodicity by L. Vuillon, 2001:

\[
\text{periodic } \iff \text{there exists a factor having exactly one return word}
\]

No similar characterization of periodicity in terms of abelian returns exist.

Moreover, in the case of abelian returns it does not hold in both directions.

\[
\exists \text{ factor having one abelian return } \not\implies \text{periodicity}
\]

Example: an infinite aperiodic word in \(\{110010, 110100\}^\omega\)
the factor 11 has one abelian return \(110010 \approx_{ab} 110100\)

\[
\text{periodicity } \not\implies \exists \text{ factor having one abelian return}
\]

Example: \(w = (001101001011001100110011)^\omega\)
Another version:

Definition

w infinite recurrent word, $u \in F(w)$

w has k returns to the abelian class of u, if the set of abelian returns of u consists of k different words.
Returns to abelian classes

Another version:

Definition

w infinite recurrent word, $u \in F(w)$

w has k returns to the abelian class of u, if the set of abelian returns of u consists of k different words.

I. e., now we take

- factors up to abelian equivalence
- return words NOT up to abelian equivalence

S. Puzynina jointly with L. Q. Zamboni

Abelian returns in Sturmian words
Example

The Thue-Morse word

\[t = 0110100110010110 \ldots \]

4 returns to the abelian class of 01 of \(t \): 0, 1, 01, 10.
The Thue-Morse word

\[t = 0110100110010110 \ldots \]

4 returns to the abelian class of 01 of \(t \): 0, 1, 01, 10.

Remind: in the sense of previous definition 01 has 3 abelian returns, because \(01 \approx_{ab} 10 \).
In the sense of the second definition the characterization also holds:

Theorem

An aperiodic recurrent infinite word w is Sturmian if and only if for each $u \in F(w)$ the word w has two or three returns to the abelian class of u.
Thank you!