Fife's Theorem for g—Powers

Narad Rampersad
Dept. of Math. and Stat., University of Winnipeg
Winnipeg, MB R3B 2E9 Canada

Jeffrey Shallit
School of Computer Science, University of Waterloo
Waterloo, Ontario N2L 3G1 Canada
shallit@cs.uwaterloo.ca
http://wuw.cs.uwaterloo.ca/"shallit

Arseny Shur
Dept. of Algebra and Discrete Math., Ural State University
Ekraterinburg, Russia

/28

Powers of words

A square is a nonempty word of the form xx.

Powers of words

A square is a nonempty word of the form xx.

An example in English is murmur.

Powers of words

A square is a nonempty word of the form xx.
An example in English is murmur.

Examples in Czech include toto and barbar.

Powers of words

A square is a nonempty word of the form xx.

An example in English is murmur.

Examples in Czech include toto and barbar.

More gennerally, an nth power is a nonempty word of the form

n L >
X = XX X.

Fractional powers

We can extend the notion of integer power to fractional powers.

Fractional powers

We can extend the notion of integer power to fractional powers.

A period of a word w is an integer p such that w[i] = w[i + p] for
1 <i<|w|—p. Such a word is p-periodic.

Fractional powers

We can extend the notion of integer power to fractional powers.

A period of a word w is an integer p such that w[i] = w[i + p] for
1 <i<|w|—p. Such a word is p-periodic.

A word that is of length g and p-periodic is called a g—power.

Fractional powers

We can extend the notion of integer power to fractional powers.

A period of a word w is an integer p such that w[i] = w[i + p] for
1 <i<|w|—p. Such a word is p-periodic.

A word that is of length g and p-periodic is called a g—power.

For example, alfalfa is a %-power, since it is of length 7 and is
3-periodic.

An overlap is a word of the form axaxa, where a is a single letter
and x is a possibly empty word.

An overlap is a word of the form axaxa, where a is a single letter
and x is a possibly empty word.

Thus, an overlap is just slightly more than a square.

An overlap is a word of the form axaxa, where a is a single letter
and x is a possibly empty word.

Thus, an overlap is just slightly more than a square.

An example in English is alfalfa.

An overlap is a word of the form axaxa, where a is a single letter
and x is a possibly empty word.

Thus, an overlap is just slightly more than a square.
An example in English is alfalfa.

An example in Czech is jejej.

Thue and overlap-free words

Axel Thue proved that the Thue-Morse word

t = (ty)n>0 = 0110100110010110 - - -

is overlap-free: it contains no overlaps.

Thue and overlap-free words

Axel Thue proved that the Thue-Morse word

t = (ty)n>0 = 0110100110010110 - - -

is overlap-free: it contains no overlaps.

Here t, is the parity of the number of 1's in the base-2 expansion
of n.

Thue and overlap-free words

Axel Thue proved that the Thue-Morse word

t = (ty)n>0 = 0110100110010110 - - -

is overlap-free: it contains no overlaps.

Here t, is the parity of the number of 1's in the base-2 expansion
of n.

The Thue-Morse word can also be viewed in another way: as the
fixed point of the Thue-Morse morphism g sending 0 — 01,
1 —10.

Other overlap-free words

However, t is not the only binary overlap-free infinite word.

Other overlap-free words

However, t is not the only binary overlap-free infinite word.

For example, consider the sequence where we count the parity of
the number of Q's in the base-2 expansion of n:

Other overlap-free words

However, t is not the only binary overlap-free infinite word.

For example, consider the sequence where we count the parity of
the number of Q's in the base-2 expansion of n:

h =0010011010010110011010011001011010010110011010 - - - ;

it is also overlap-free.

Other overlap-free words

However, t is not the only binary overlap-free infinite word.

For example, consider the sequence where we count the parity of
the number of Q's in the base-2 expansion of n:

h =0010011010010110011010011001011010010110011010 - - - ;
it is also overlap-free.

Can we somehow characterize all infinite overlap-free binary words?

The work of Earl Fife

The work of Earl Fife

A description of all infinite overlap-free words was given by Earl
Fife in 1980.

The work of Earl Fife

A description of all infinite overlap-free words was given by Earl
Fife in 1980.

He defined
X = {p(0), (1), p2(0), p2(1), ...}

and a canonical decomposition for words ending in 01 or 10 as
follows:

The work of Earl Fife

A description of all infinite overlap-free words was given by Earl
Fife in 1980.

He defined
X = {u(0), p(1), 42(0), (1), ...}
and a canonical decomposition for words ending in 01 or 10 as

follows:
w=zyy

The work of Earl Fife

A description of all infinite overlap-free words was given by Earl
Fife in 1980.

He defined
X = {p(0), (1), p2(0), p2(1), ...}

and a canonical decomposition for words ending in 01 or 10 as
follows:

w=2zyy
where y is the longest word in X such that yy is a suffix of w.

Here y is the complementary word to y, obtained by sending
0—1land1—0.

The work of Earl Fife

A description of all infinite overlap-free words was given by Earl
Fife in 1980.

He defined
X = {p(0), u(1), 2(0), p2(1), ...}
and a canonical decomposition for words ending in 01 or 10 as
follows:
w=zyy

where y is the longest word in X such that yy is a suffix of w.
Here y is the complementary word to y, obtained by sending
0—1land1—0.

Example: the canonical decomposition of 001001101001 is

0010 0110 1001.

The work of Earl Fife

Fife defined three maps based on the canonical decomposition
w=2zyy:

a(w)=wyyy

The work of Earl Fife

Fife defined three maps based on the canonical decomposition
w=2zyy:

a(w)=wyyy

The work of Earl Fife

Fife defined three maps based on the canonical decomposition

w=2zyy:
a(w)=wyyy
Bw)=wyyyy
Y(w) =wyy

The work of Earl Fife

Fife defined three maps based on the canonical decomposition
w=2zyy:

Fife proved that every infinite overlap-free word has a unique
description of the form x(01), x(001), x(10), or x(110), where x is
an infinite word over the alphabet «, 3, satisfying certain
properties.

The work of Earl Fife

Fife defined three maps based on the canonical decomposition
w=2zyy:

Fife proved that every infinite overlap-free word has a unique
description of the form x(01), x(001), x(10), or x(110), where x is
an infinite word over the alphabet «, 3, satisfying certain
properties.

These properties amount to specifying a finite automaton
accepting the set of valid words.

Deficiencies of Fife's theory

» finite words need to be examined at the end, not the
beginning, to determine their canonical decomposition

Deficiencies of Fife's theory

» finite words need to be examined at the end, not the
beginning, to determine their canonical decomposition

» one needs to look at arbitrarily large factors of a word to
determine its canonical decomposition

Deficiencies of Fife's theory

» finite words need to be examined at the end, not the
beginning, to determine their canonical decomposition

» one needs to look at arbitrarily large factors of a word to
determine its canonical decomposition

» the transformations «, 3, 7 are unmotivated and appear out
of nowhere

Deficiencies of Fife's theory

» finite words need to be examined at the end, not the
beginning, to determine their canonical decomposition

» one needs to look at arbitrarily large factors of a word to
determine its canonical decomposition

» the transformations «, 3, 7 are unmotivated and appear out
of nowhere

» verifying the automaton is complicated

Deficiencies of Fife's theory

» finite words need to be examined at the end, not the
beginning, to determine their canonical decomposition

» one needs to look at arbitrarily large factors of a word to
determine its canonical decomposition

» the transformations «, 3, 7 are unmotivated and appear out
of nowhere

» verifying the automaton is complicated

» not clear how to extend this to other kinds of repetitions, such
as %—powers

An alternative: the decomposition theorem of

Restivo-Salemi

Restivo and Salemi (1985) discovered an alternative decomposition
for finite binary overlap-free words.

10/28

An alternative: the decomposition theorem of

Restivo-Salemi

Restivo and Salemi (1985) discovered an alternative decomposition
for finite binary overlap-free words.

Theorem.
Every finite binary overlap-free word w can be written uniquely in

the form xu(y)z, where y is overlap-free, and
x,z € {¢,0,00,1,11}.

10/28

An alternative: the decomposition theorem of

Restivo-Salemi

Restivo and Salemi (1985) discovered an alternative decomposition
for finite binary overlap-free words.

Theorem.
Every finite binary overlap-free word w can be written uniquely in

the form xu(y)z, where y is overlap-free, and
x,z € {¢,0,00,1,11}.

Furthermore, if |w| > 7, then this decomposition is unique.

10/28

An alternative: the decomposition of Restivo-Salemi

The Restivo-Salemi decomposition was extended to infinite binary
overlap-free words by Allouche, Currie, and JOS (1998).

11/28

An alternative: the decomposition of Restivo-Salemi

The Restivo-Salemi decomposition was extended to infinite binary
overlap-free words by Allouche, Currie, and JOS (1998).

Theorem.
Every infinite binary overlap-free word w can be written uniquely in

the form
w = x i(y)

where x € {€,0,1,00,11} and y is overlap-free.

11/28

An alternative: the decomposition of Restivo-Salemi

The Restivo-Salemi decomposition was extended to infinite binary
overlap-free words by Allouche, Currie, and JOS (1998).

Theorem.
Every infinite binary overlap-free word w can be written uniquely in
the form

w = xpu(y)
where x € {€,0,1,00,11} and y is overlap-free.

Furthermore, the correct decomposition can be deduced by
examining the first 5 symbols of w.

11/28

lterating the Restivo-Salemi decomposition

The Restivo-Salemi decomposition can be iterated:

w = X M(Y1)

12/28

lterating the Restivo-Salemi decomposition

The Restivo-Salemi decomposition can be iterated:

w = x1pu(y1)
= xi p(x2) 12 (y2)

12/28

lterating the Restivo-Salemi decomposition

The Restivo-Salemi decomposition can be iterated:

w = xipu(y1)
= x1 p(x)
= x1 p(x2)

(y2)

2
17 (x3) p(y3) = -

12/28

lterating the Restivo-Salemi decomposition

The Restivo-Salemi decomposition can be iterated:

w = xipu(y1)
= x1 p(x)
= x1 p(x2)

(y2)

2
17 (x3) p(y3) = -

If the sequence of x; contains infinitely many nonempty words,

then this gives the decomposition

w = xi p(x) p2(xs) ---

12/28

lterating the Restivo-Salemi decomposition

The Restivo-Salemi decomposition can be iterated:

w = xipu(y1)
= x1 p(x2) 12(y2)
= x1 p(x2) p2(x3) pi(ys) =

If the sequence of x; contains infinitely many nonempty words,
then this gives the decomposition

w = xi p(x) p2(xs) ---

Otherwise, we get
w = xi p(x) p2(x3) -+ 1 (xip1) p¥(a)
for a € {0,1}.

12/28

lterating the Restivo-Salemi decomposition

The Restivo-Salemi decomposition can be iterated:

w = xipu(y1)
= x1 p(x2) 12(y2)
= x1 p(x2) p2(x3) pi(ys) =

If the sequence of x; contains infinitely many nonempty words,
then this gives the decomposition

w=x1 p(x2) pi(x3) -+
Otherwise, we get
w = xi p(x) p2(x3) -+ 1 (xip1) p¥(a)

for a € {0,1}.

Further, this decomposition is unique.
12/28

lterating the Restivo-Salemi decomposition

So we can specify an infinite binary overlap-free word by providing

(i) the infinite sequence of x;, or

13/28

lterating the Restivo-Salemi decomposition

So we can specify an infinite binary overlap-free word by providing

(i) the infinite sequence of x;, or

(i) the finite sequence of x; (which is followed by 0“) and a.

13/28

lterating the Restivo-Salemi decomposition

So we can specify an infinite binary overlap-free word by providing

(i) the infinite sequence of x;, or

(i) the finite sequence of x; (which is followed by 0“) and a.

We encode the permissible x; as follows:

13/28

lterating the Restivo-Salemi decomposition

So we can specify an infinite binary overlap-free word by providing

(i) the infinite sequence of x;, or

(i) the finite sequence of x; (which is followed by 0“) and a.

We encode the permissible x; as follows:

13/28

lterating the Restivo-Salemi decomposition

So we can specify an infinite binary overlap-free word by providing

(i) the infinite sequence of x;, or

(i) the finite sequence of x; (which is followed by 0“) and a.

We encode the permissible x; as follows:

13/28

lterating the Restivo-Salemi decomposition

So we can specify an infinite binary overlap-free word by providing

(i) the infinite sequence of x;, or

(i) the finite sequence of x; (which is followed by 0“) and a.

We encode the permissible x; as follows:

Po = €
pp = 0
p> = 00

13/28

lterating the Restivo-Salemi decomposition

So we can specify an infinite binary overlap-free word by providing

(i) the infinite sequence of x;, or

(i) the finite sequence of x; (which is followed by 0“) and a.

We encode the permissible x; as follows:

Po = €
pp = 0
p> = 00
p3 = 1

13/28

lterating the Restivo-Salemi decomposition

So we can specify an infinite binary overlap-free word by providing

(i) the infinite sequence of x;, or

(i) the finite sequence of x; (which is followed by 0“) and a.

We encode the permissible x; as follows:

Po = €
pp = 0
p> = 00
p3 = 1
ps = 11

13/28

An example of the iterated decomposition

Let's start with

h =001001101001011001101001100101101001011001101001 - - - |

the word counting the number of 0's (mod 2) in the binary
expansion of n. Then

14 /28

An example of the iterated decomposition

Let's start with
h =001001101001011001101001100101101001011001101001 - - - ,

the word counting the number of 0's (mod 2) in the binary
expansion of n. Then

h = 004x(101100101101001100101100110100101101001 - - -)

14 /28

An example of the iterated decomposition

Let's start with

h =001001101001011001101001100101101001011001101001 - - - |

the word counting the number of 0's (mod 2) in the binary
expansion of n. Then

h = 004(101100101101001100101100110100101101001 - -)
= 00 p(1) p(1(010011010010110011010011001011010- - -))

14 /28

An example of the iterated decomposition

Let's start with
h =001001101001011001101001100101101001011001101001 - - - ,

the word counting the number of 0's (mod 2) in the binary
expansion of n. Then

h = 004(101100101101001100101100110100101101001 - -)
= 00 (1) (1(010011010010110011010011001011010- - -))
= 00 (1) 2(12(0)) p(2((1011001011010011001011001 - - -)))

14 /28

An example of the iterated decomposition

Let's start with
h =001001101001011001101001100101101001011001101001 - - - ,

the word counting the number of 0's (mod 2) in the binary
expansion of n. Then

h = 004(101100101101001100101100110100101101001 - -)
= 00 (1) (1(010011010010110011010011001011010- - -))
= 00 (1) 2(12(0)) p(2((1011001011010011001011001 - - -)))

= 00pu(1) p?(0) *(1) u*(0) - --

14 /28

An example of the iterated decomposition

Let's start with
h =001001101001011001101001100101101001011001101001 - - - ,

the word counting the number of 0's (mod 2) in the binary
expansion of n. Then

h = 004x(101100101101001100101100110100101101001 - - -)
= 00 4(1) pu((010011010010110011010011001011010 - - -))
— 00 (1) (12(0)) o 1e(12(1011001011010011001011001 - - -)))
= 00pu(1) p?(0) *(1) u*(0) - --
= p2pu(p3) 1?(p1) 12 (p3) it (pr) - - -

14 /28

An example of the iterated decomposition

Let's start with
h =001001101001011001101001100101101001011001101001 - - - ,

the word counting the number of 0's (mod 2) in the binary
expansion of n. Then

h = 004(101100101101001100101100110100101101001 - -)
= 00 (1) (1(010011010010110011010011001011010- - -))
= 00 (1) 2(12(0)) p(2((1011001011010011001011001 - - -)))

= 00pu(1) p?(0) *(1) u*(0) - --
= p2pu(p3) 1?(p1) 12 (p3) it (pr) - - -

So h is encoded by the sequence of indices 2313131 --- = 2(31)“.

14 /28

Valid decomposition sequences

However, not every sequence of x; gives an infinite overlap-free
word.

15/28

Valid decomposition sequences

However, not every sequence of x; gives an infinite overlap-free
word.

For example, if x; = 00, then x» # 0, for otherwise w begins
001(0) = 0001, which has an overlap.

15/28

Valid decomposition sequences

However, not every sequence of x; gives an infinite overlap-free
word.

For example, if x; = 00, then x» # 0, for otherwise w begins
001(0) = 0001, which has an overlap.

Can we somehow characterize the “legal” sequences of x; that give
the overlap-free infinite words?

15/28

Valid decomposition sequences

However, not every sequence of x; gives an infinite overlap-free
word.

For example, if x; = 00, then x» # 0, for otherwise w begins
001(0) = 0001, which has an overlap.

Can we somehow characterize the “legal” sequences of x; that give
the overlap-free infinite words?

Yes, using a finite automaton.

15/28

The automaton

Let O denote the set of all infinite overlap-free words.
States of the automaton represent subsets of O, as follows:

A= 0

= {xeX¥ : lxe O}

{x € X% : 1x € O and x begins with 101}
{xex¥ : 0xe O}

{x € X : 0x € O and x begins with 010}
{x€X¥ : 0x € O and x begins with 11}
{x € X¥ : 0x € O and x begins with 1}
{x € X¥ : 1Ix € O and x begins with 1}
{x € X¥ : 1x € O and x begins with 00}
{x € X¥ : 1Ix € O and x begins with 0}
= {xe€X¥ : 0x € O and x begins with 0}

XL —-—ITOmTMmMT O™
Il

16 /28

We connect states as follows: an arrow from state S to state T is
labeled i means

17 /28

The result for overlaps

Theorem.
Every infinite binary overlap-free word x is encoded by an infinite
path, starting in state A, through the automaton.

18/28

The result for overlaps

Theorem.
Every infinite binary overlap-free word x is encoded by an infinite
path, starting in state A, through the automaton.

Every infinite path through the automaton not ending in 0“ codes
a unique infinite binary overlap-free word x. If a path i ends in 0¥
and this suffix corresponds to a cycle on state A or a cycle between
states B and D, then x is coded by either i;0 or i; 1. If a path i
ends in 0% and this suffix corresponds to a cycle between states J
and K, then x is coded by i;0. If a path i ends in 0“ and this suffix
corresponds to a cycle between states G and H, then x is coded by
i;l.

18/28

The special role of %—powers

%—powers play a special role in the theory of binary words:

19/28

The special role of %—powers

%—powers play a special role in the theory of binary words:

Kolpakov & Kucherov (1997) showed that the function measuring
the minimum frequency of a letter in a-power-free words is
discontinuous at %

19/28

The special role of %—powers

%—powers play a special role in the theory of binary words:
Kolpakov & Kucherov (1997) showed that the function measuring
the minimum frequency of a letter in a-power-free words is
discontinuous at %

Karhumaki and JOS (2004) proved that there are polynomially
many a-power-free words for o < % but exponentially many such
words for a > %

19/28

The special role of %—powers

%—powers play a special role in the theory of binary words:

Kolpakov & Kucherov (1997) showed that the function measuring
the minimum frequency of a letter in a-power-free words is
discontinuous at %

Karhumaki and JOS (2004) proved that there are polynomially
many a-power-free words for o < % but exponentially many such
words for a > %

Rampersad (2005) showed that the only %—power—free binary words
that are the fixed points of a non-identity morphism are the
Thue-Morse word and its complement; furthermore % is best

possible.

19/28

The special role of %—powers

%—powers play a special role in the theory of binary words:

Kolpakov & Kucherov (1997) showed that the function measuring
the minimum frequency of a letter in a-power-free words is
discontinuous at %

Karhumaki and JOS (2004) proved that there are polynomially
many a-power-free words for o < % but exponentially many such
words for a > %

Rampersad (2005) showed that the only %—power—free binary words
that are the fixed points of a non-identity morphism are the
Thue-Morse word and its complement; furthermore % is best

possible.

Currie & Rampersad (2010) showed that % is the infimum of all
exponents « such that there exists an infinite word avoiding
a-powers and containing arbitrarily large squares beginning at

every position.
19/28

Extending Fife to %—Powers

Partial results in the Ph. D. thesis of Narad Rampersad (2007)

20/28

Extending Fife to %—Powers

Partial results in the Ph. D. thesis of Narad Rampersad (2007)
Done for finite words by Blondel, Cassaigne, and Jungers (2009)

20/28

Extending Fife to %—Powers

Partial results in the Ph. D. thesis of Narad Rampersad (2007)
Done for finite words by Blondel, Cassaigne, and Jungers (2009)

In this talk: a simpler version, but for infinite words.

20/28

Extending Fife to %—Powers

Partial results in the Ph. D. thesis of Narad Rampersad (2007)
Done for finite words by Blondel, Cassaigne, and Jungers (2009)
In this talk: a simpler version, but for infinite words.

Relies on a version of the Restivo-Salemi decomposition that works
for %—powers:

Theorem.

Let2 <a< % Then every infinite binary a-power-free word w
can be written uniquely in the form

w = x u(y)

where x € {€,0,1,00,11} and y is overlap-free.

20/28

Extending Fife to %—Powers

Partial results in the Ph. D. thesis of Narad Rampersad (2007)
Done for finite words by Blondel, Cassaigne, and Jungers (2009)
In this talk: a simpler version, but for infinite words.

Relies on a version of the Restivo-Salemi decomposition that works
for %—powers:

Theorem.

Let2 <a< % Then every infinite binary a-power-free word w
can be written uniquely in the form

w = x u(y)

where x € {€,0,1,00,11} and y is overlap-free.

Furthermore, the correct decomposition can be deduced by
examining the first 5 symbols of w.

20/28

(5]
—
(D)
(@)
7__3
—
L
(=
(©)
-+
(g0]
£
(@)
s
=
T
Q
—
N
2
LL
(D)
S=
_I

Verifying the automaton

Each transition in the automaton corresponds to an assertion, such
as

22/28

Verifying the automaton

Each transition in the automaton corresponds to an assertion, such
as

1(x) is £-power-free iff x is £-power-free.

22/28

Verifying the automaton

Each transition in the automaton corresponds to an assertion, such
as
1(x) is £-power-free iff x is £-power-free.

Many of these follow from known results on a-power-free words.

22/28

Verifying the automaton

Each transition in the automaton corresponds to an assertion, such
as

1(x) is £-power-free iff x is £-power-free.
Many of these follow from known results on a-power-free words.

Others require some (fairly simple) ad hoc reasoning.

22/28

Proof of one assertion

F23 = Fi3: in other words, 00 (1u(w)) is %—power—free iff
Op(1pe(w)) is %—power—free.

23 /28

Proof of one assertion

F23 = Fi3: in other words, 00 (1u(w)) is %—power—free iff
Op(1pe(w)) is %—power—free.

One direction is obvious.

23 /28

Proof of one assertion

F23 = Fi3: in other words, 00 (1u(w)) is %—power—free iff
Op(1pe(w)) is %—power—free.

One direction is obvious.

For the other, note that if 0 (1z(w)) is Z-power-free, but
004(1p4(w)) is not, then the Z-power in it must be a prefix.

23 /28

Proof of one assertion

F23 = Fi3: in other words, 00 (1u(w)) is %—power—free iff
Op(1pe(w)) is %—power—free.

One direction is obvious.

For the other, note that if 0 (1z(w)) is Z-power-free, but
004(1p4(w)) is not, then the Z-power in it must be a prefix.

However, if 0u(1p(w)) is Z-power-free, then w must start with 0
(else Op(1p(w)) would start with 01010).

23 /28

Proof of one assertion

F23 = Fi3: in other words, 00 (1u(w)) is %—power—free iff
Op(1pe(w)) is %—power—free.

One direction is obvious.

For the other, note that if 0 (1z(w)) is Z-power-free, but
004(1p4(w)) is not, then the Z-power in it must be a prefix.

However, if 0u(1p(w)) is Z-power-free, then w must start with 0
(else Op(1p(w)) would start with 01010).

So 00x(1pu(w)) starts with 001001. But this word cannot appear
twice, because any letter that precedes it gives a %—power.

23 /28

Consequences of the main theorem

Theorem. The lexicographically least infinite %—power—free word is
001001t.

24 /28

Consequences of the main theorem

Theorem. The lexicographically least infinite %—power—free word is
001001t.

Proof. Examine the possible paths in the automaton.

24 /28

More consequences of the main theorem

An infinite word (ap)n>0 is k-automatic if there is an automaton
with output that, on input n in base k, reaches a state whose
associated output is a,.

25/28

More consequences of the main theorem

An infinite word (ap)n>0 is k-automatic if there is an automaton
with output that, on input n in base k, reaches a state whose
associated output is a,.

Theorem. An infinite %—power—free word is 2-automatic if and only
if (a) it is encoded by the automaton previously shown and (b) the
sequence of symbols coding it is ultimately periodic.

25/28

Proof of 2-automatic result

It suffices to look at the 2-decimation of

x1 p(x2) p2(x3) -

26 /28

Proof of 2-automatic result

It suffices to look at the 2-decimation of

x1 p(x2) p2(x3) -

If x1 empty this is
xo p(xs) pP(xa) -

and

26 /28

Proof of 2-automatic result

It suffices to look at the 2-decimation of

x1 p(x2) p2(x3) -
If x1 empty this is

xo p(xs) pP(xa) -

and
% 1(%3) 12() -

26 /28

Proof of 2-automatic result

It suffices to look at the 2-decimation of

x1 p(x2) p2(x3) -
If x1 empty this is

xo p(xs) pP(xa) -

and
% 1(%3) 12() -

If |x1] =1 this is
x1 % (u(3%3) p(xa) - -

26 /28

Proof of 2-automatic result

It suffices to look at the 2-decimation of

x1 p(x2) p2(x3) -

If x1 empty this is
xo p(xs) pP(xa) -

and
% 1(%3) 12() -

If |x1] =1 this is
x1 % (u(3%3) p(xa) - -

and
xo p(x3) P (xa) -+

26 /28

Proof of 2-automatic result

If |x1| = 2 this is
a xo p(xs) p?(xa) ---

27 /28

Proof of 2-automatic result

If |x1| = 2 this is

a xo p(xs) p?(xa) ---
and

ax p(33) (%) - .

27 /28

Proof of 2-automatic result

If |x1| = 2 this is

a xo p(xs) p?(xa) ---
and

ax p(33) (%) - .

Now x1 p(x2) pu?(x3)--- is 2-automatic iff the set of all
2-decimations is finite.

27 /28

Proof of 2-automatic result

If |x1| = 2 this is
a xo p(xs) p?(xa) ---
and

2 %5 1(53) 12() -+
Now x1 p(x2) pu?(x3)--- is 2-automatic iff the set of all
2-decimations is finite.
But if it is finite then for some i < j we have

xi p(xi41) p2(xiv2) - = x5 p(xien) 12 (x12) -

so the x; are ultimately periodic with period j — /.

27 /28

Proof of 2-automatic result

If |x1| = 2 this is

a xo p(xs) p?(xa) ---
and

ax p(33) (%) - .

Now x1 p(x2) pu?(x3)--- is 2-automatic iff the set of all
2-decimations is finite.

But if it is finite then for some i < j we have

xi p(xi41) p2(xiv2) - = x5 p(xien) 12 (x12) -

so the x; are ultimately periodic with period j — /.

On the other hand, if the x; are ultimately periodic then the set of
all decimations is finite, since we can specify any decimation by (1)
an initial term of length at most 4 (2) whether subsequent terms
are complemented and (3) which of a finite set of x; begins the

second term. 27 /28

For Further Reading

> J. Berstel. A rewriting of Fife's theorem about overlap-free
words. In J. Karhumaki, H. Maurer, and G. Rozenberg,
editors, Results and Trends in Theoretical Computer Science,
Vol. 812 of Lecture Notes in Computer Science, pp. 19-29.
Springer-Verlag, 1994.

» V. D. Blondel, J. Cassaigne, and R. M. Jungers. On the
number of a-power-free binary words for 2 < o < 7/3.
Theoret. Comput. Sci. 410 (2009), 2823-2833.

» E. D. Fife. Binary sequences which contain no BBb. Trans.
Amer. Math. Soc. 261 (1980), 115-136.

» A. Restivo and S. Salemi. Overlap free words on two symbols.
In M. Nivat and D. Perrin, editors, Automata on Infinite
Words, Vol. 192 of Lecture Notes in Computer Science, pp.
198-206. Springer-Verlag, 1985.

28 /28

