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Powers of words

A square is a nonempty word of the form xx .
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Powers of words

A square is a nonempty word of the form xx .

An example in English is murmur.

Examples in Czech include toto and barbar.

More generally, an nth power is a nonempty word of the form

xn =

n
︷ ︸︸ ︷
xx · · · x .
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Fractional powers

We can extend the notion of integer power to fractional powers.
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Fractional powers

We can extend the notion of integer power to fractional powers.

A period of a word w is an integer p such that w [i ] = w [i + p] for
1 ≤ i ≤ |w | − p. Such a word is p-periodic.

A word that is of length q and p-periodic is called a q
p
-power.

For example, alfalfa is a 7
3 -power, since it is of length 7 and is

3-periodic.
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Overlaps

An overlap is a word of the form axaxa, where a is a single letter
and x is a possibly empty word.
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Overlaps

An overlap is a word of the form axaxa, where a is a single letter
and x is a possibly empty word.

Thus, an overlap is just slightly more than a square.

An example in English is alfalfa.

An example in Czech is jejej.
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Thue and overlap-free words

Axel Thue proved that the Thue-Morse word

t = (tn)n≥0 = 0110100110010110 · · ·

is overlap-free: it contains no overlaps.
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Thue and overlap-free words

Axel Thue proved that the Thue-Morse word

t = (tn)n≥0 = 0110100110010110 · · ·

is overlap-free: it contains no overlaps.

Here tn is the parity of the number of 1’s in the base-2 expansion
of n.

The Thue-Morse word can also be viewed in another way: as the
fixed point of the Thue-Morse morphism µ sending 0→ 01,
1→ 10.
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Other overlap-free words

However, t is not the only binary overlap-free infinite word.
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Other overlap-free words

However, t is not the only binary overlap-free infinite word.

For example, consider the sequence where we count the parity of
the number of 0’s in the base-2 expansion of n:

h = 0010011010010110011010011001011010010110011010 · · · ;

it is also overlap-free.

Can we somehow characterize all infinite overlap-free binary words?
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The work of Earl Fife

A description of all infinite overlap-free words was given by Earl
Fife in 1980.

He defined
X = {µ(0), µ(1), µ2(0), µ2(1), . . .}

and a canonical decomposition for words ending in 01 or 10 as
follows:

w = z y y

where y is the longest word in X such that y y is a suffix of w .
Here y is the complementary word to y , obtained by sending
0→ 1 and 1→ 0.

Example: the canonical decomposition of 001001101001 is

0010 0110 1001.
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The work of Earl Fife

Fife defined three maps based on the canonical decomposition
w = z y y :

α(w) = w y y y
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The work of Earl Fife

Fife defined three maps based on the canonical decomposition
w = z y y :

α(w) = w y y y

β(w) = w y y y y

γ(w) = w y y

Fife proved that every infinite overlap-free word has a unique
description of the form x(01), x(001), x(10), or x(110), where x is
an infinite word over the alphabet α, β, γ satisfying certain
properties.

These properties amount to specifying a finite automaton
accepting the set of valid words.
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Deficiencies of Fife’s theory

I finite words need to be examined at the end, not the
beginning, to determine their canonical decomposition
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Deficiencies of Fife’s theory

I finite words need to be examined at the end, not the
beginning, to determine their canonical decomposition

I one needs to look at arbitrarily large factors of a word to
determine its canonical decomposition

I the transformations α, β, γ are unmotivated and appear out
of nowhere

I verifying the automaton is complicated

I not clear how to extend this to other kinds of repetitions, such
as 7

3 -powers
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An alternative: the decomposition theorem of

Restivo-Salemi

Restivo and Salemi (1985) discovered an alternative decomposition
for finite binary overlap-free words.
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Restivo-Salemi

Restivo and Salemi (1985) discovered an alternative decomposition
for finite binary overlap-free words.

Theorem.

Every finite binary overlap-free word w can be written uniquely in
the form xµ(y)z , where y is overlap-free, and
x , z ∈ {ε, 0, 00, 1, 11}.

Furthermore, if |w | ≥ 7, then this decomposition is unique.
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overlap-free words by Allouche, Currie, and JOS (1998).

Theorem.

Every infinite binary overlap-free word w can be written uniquely in
the form

w = x µ(y)

where x ∈ {ε, 0, 1, 00, 11} and y is overlap-free.

Furthermore, the correct decomposition can be deduced by
examining the first 5 symbols of w.
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Iterating the Restivo-Salemi decomposition

The Restivo-Salemi decomposition can be iterated:

w = x1 µ(y1)
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2(y2)

= x1 µ(x2) µ
2(x3) µ

3(y3) = · · ·

If the sequence of xi contains infinitely many nonempty words,
then this gives the decomposition

w = x1 µ(x2) µ
2(x3) · · · .

Otherwise, we get

w = x1 µ(x2) µ
2(x3) · · · µ

i (xi+1) µ
ω(a)

for a ∈ {0, 1}.

Further, this decomposition is unique.
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Iterating the Restivo-Salemi decomposition

So we can specify an infinite binary overlap-free word by providing

(i) the infinite sequence of xi , or

(ii) the finite sequence of xi (which is followed by 0ω) and a.

We encode the permissible xi as follows:

p0 = ε

p1 = 0

p2 = 00

p3 = 1

p4 = 11
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An example of the iterated decomposition

Let’s start with

h = 001001101001011001101001100101101001011001101001 · · · ,

the word counting the number of 0’s (mod 2) in the binary
expansion of n. Then
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An example of the iterated decomposition

Let’s start with

h = 001001101001011001101001100101101001011001101001 · · · ,

the word counting the number of 0’s (mod 2) in the binary
expansion of n. Then

h = 00µ(101100101101001100101100110100101101001 · · · )

= 00µ(1)µ(µ(010011010010110011010011001011010 · · · ))

= 00µ(1)µ(µ(0))µ(µ(µ(1011001011010011001011001 · · · )))

= 00µ(1)µ2(0)µ3(1)µ4(0) · · ·

= p2 µ(p3)µ
2(p1)µ

3(p3)µ
4(p1) · · · .

So h is encoded by the sequence of indices 2313131 · · · = 2(31)ω.
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Valid decomposition sequences

However, not every sequence of xi gives an infinite overlap-free
word.

For example, if x1 = 00, then x2 6= 0, for otherwise w begins
00µ(0) = 0001, which has an overlap.

Can we somehow characterize the “legal” sequences of xi that give
the overlap-free infinite words?

Yes, using a finite automaton.
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The automaton

Let O denote the set of all infinite overlap-free words.
States of the automaton represent subsets of O, as follows:

A = O

B = {x ∈ Σω : 1x ∈ O}

C = {x ∈ Σω : 1x ∈ O and x begins with 101}

D = {x ∈ Σω : 0x ∈ O}

E = {x ∈ Σω : 0x ∈ O and x begins with 010}

F = {x ∈ Σω : 0x ∈ O and x begins with 11}

G = {x ∈ Σω : 0x ∈ O and x begins with 1}

H = {x ∈ Σω : 1x ∈ O and x begins with 1}

I = {x ∈ Σω : 1x ∈ O and x begins with 00}

J = {x ∈ Σω : 1x ∈ O and x begins with 0}

K = {x ∈ Σω : 0x ∈ O and x begins with 0}
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We connect states as follows: an arrow from state S to state T is
labeled i means

w ∈ T ⇐⇒ pi µ(w) ∈ S .

1
0

0

31

0

D

C

F

G

HK

J

I

E

B

A

3

31

3

1

3

3

1

0

3

0

00

0

1

0

24

1
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The result for overlaps

Theorem.

Every infinite binary overlap-free word x is encoded by an infinite
path, starting in state A, through the automaton.
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The result for overlaps

Theorem.

Every infinite binary overlap-free word x is encoded by an infinite
path, starting in state A, through the automaton.

Every infinite path through the automaton not ending in 0ω codes
a unique infinite binary overlap-free word x. If a path i ends in 0ω

and this suffix corresponds to a cycle on state A or a cycle between
states B and D, then x is coded by either i; 0 or i; 1. If a path i

ends in 0ω and this suffix corresponds to a cycle between states J
and K, then x is coded by i; 0. If a path i ends in 0ω and this suffix
corresponds to a cycle between states G and H, then x is coded by
i; 1.
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Karhumäki and JOS (2004) proved that there are polynomially
many α-power-free words for α ≤ 7

3 , but exponentially many such
words for α > 7

3 .

19 / 28



The special role of 7
3-powers

7
3 -powers play a special role in the theory of binary words:

Kolpakov & Kucherov (1997) showed that the function measuring
the minimum frequency of a letter in α-power-free words is
discontinuous at 7

3 .
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3 .

Karhumäki and JOS (2004) proved that there are polynomially
many α-power-free words for α ≤ 7

3 , but exponentially many such
words for α > 7

3 .

Rampersad (2005) showed that the only 7
3 -power-free binary words

that are the fixed points of a non-identity morphism are the
Thue-Morse word and its complement; furthermore 7

3 is best
possible.

Currie & Rampersad (2010) showed that 7
3 is the infimum of all

exponents α such that there exists an infinite word avoiding
α-powers and containing arbitrarily large squares beginning at
every position.
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The Fife-like automaton for 7
3-powers
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Verifying the automaton
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Verifying the automaton

Each transition in the automaton corresponds to an assertion, such
as

µ(x) is 7
3 -power-free iff x is 7

3 -power-free.

Many of these follow from known results on α-power-free words.

Others require some (fairly simple) ad hoc reasoning.
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Proof of one assertion

F23 = F13: in other words, 00µ(1µ(w)) is 7
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0µ(1µ(w)) is 7
3 -power-free.

One direction is obvious.

For the other, note that if 0µ(1µ(w)) is 7
3 -power-free, but

00µ(1µ(w)) is not, then the 7
3 -power in it must be a prefix.

However, if 0µ(1µ(w)) is 7
3 -power-free, then w must start with 0

(else 0µ(1µ(w)) would start with 01010).

So 00µ(1µ(w)) starts with 001001. But this word cannot appear
twice, because any letter that precedes it gives a 7

3 -power.

23 / 28



Consequences of the main theorem

Theorem. The lexicographically least infinite 7
3 -power-free word is

001001t.
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Theorem. The lexicographically least infinite 7
3 -power-free word is

001001t.

Proof. Examine the possible paths in the automaton.
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More consequences of the main theorem

An infinite word (an)n≥0 is k-automatic if there is an automaton
with output that, on input n in base k, reaches a state whose
associated output is an.
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More consequences of the main theorem

An infinite word (an)n≥0 is k-automatic if there is an automaton
with output that, on input n in base k, reaches a state whose
associated output is an.

Theorem. An infinite 7
3 -power-free word is 2-automatic if and only

if (a) it is encoded by the automaton previously shown and (b) the
sequence of symbols coding it is ultimately periodic.
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Proof of 2-automatic result

It suffices to look at the 2-decimation of

x1 µ(x2) µ
2(x3) · · · .
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If |x1| = 2 this is
a x2 µ(x3) µ

2(x4) · · ·

and
a x2 µ(x3) µ

2(x4) · · · .

Now x1 µ(x2) µ
2(x3) · · · is 2-automatic iff the set of all

2-decimations is finite.

But if it is finite then for some i < j we have

xi µ(xi+1) µ
2(xi+2) · · · = xj µ(xj+1) µ

2(xj+2) · · ·

so the xi are ultimately periodic with period j − i .

On the other hand, if the xi are ultimately periodic then the set of
all decimations is finite, since we can specify any decimation by (1)
an initial term of length at most 4 (2) whether subsequent terms
are complemented and (3) which of a finite set of xi begins the
second term. 27 / 28
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