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1. Preliminaries

I A finite partial word of length n over an alphabet A is a
function w : {0, . . . , n − 1} → A ∪ {�} = A�.

I An infinite partial word over A is a function w : N → A�.
I In both the finite and infinite cases, if w(i) 6= �, then i is

defined in w , and if w(i) = �, then i is a hole in w .
I If w has no holes, then w is a full word.
I A completion ŵ is a “filling in” of w ’s holes with letters from

A.

w = abb�b�cb is a partial word of length 8 with holes at
positions 3 and 5; ŵ = abbabbcb is one of w ’s completions



Compatibility

The partial words u and v are compatible, denoted by u ↑ v , if
there exist completions û, v̂ such that û = v̂ .

u = a � b b c �
v = � b b � c �



Periodicity

I A finite partial word w over A is called p-periodic, if p is a
positive integer such that w(i) = w(j) whenever i and j are
defined in w and satisfy i ≡ j mod p. We say that w is
periodic if it is p-periodic for some p.

I An infinite partial word w over A is called periodic if there
exists a positive integer p (called a period of w) and letters
a0, a1, . . . , ap−1 ∈ A such that for all i ∈ N and
j ∈ {0, . . . , p − 1}, i ≡ j mod p implies w(i) ↑ aj .



Shift function

If w is an infinite partial word, then we define the shift σp(w) by

(σp(w))(i) = w(i + p)



Ultimate periodicity

I An infinite partial word w is called ultimately periodic if
there exist a finite partial word u and an infinite periodic
partial word v (both over A) such that w = uv .

I If w is a full ultimately periodic word, then
w = xyω = xyyy · · · for some finite words x , y with y 6= ε
called a period of w (we also call the length |y | a period).

If |x | and |y | are as small as possible, then y is called the
minimal period of w .



Factor and subword

I A finite partial word u is a factor of the partial word w if u is
a block of consecutive symbols of w .

�a� is a factor of aa�a�b

I A finite full word u is a subword of the partial word w ,
denoted u � w , if u is a block of consecutive symbols of
some completion of w .

aaa, aab, baa, bab are the subwords of aa�a�b
corresponding to the factor �a�



Subword complexity

The subword complexity of a partial word w over a given
alphabet is the function that assigns to each integer n,
0 ≤ n ≤ |w |, the number pw (n) of distinct subwords of w of
length n.

If w = ba�ab, then pw (3) = 5 since aaa, aab, aba, baa and bab
are the subwords of length 3 of w .



Ferenczi’s necessary conditions

Theorem
The following are necessary conditions for a function pw from N
to N to be the subword complexity function of an infinite partial
word w over a finite alphabet A:

1. pw is non-decreasing;
2. pw (m + n) ≤ pw (m)pw (n) for all m, n;
3. whenever pw (n) ≤ n or pw (n + 1) = pw (n) for some n, then

pw is bounded;
4. if A has k letters, then pw (n) ≤ kn for all n; if pw (n0) < kn0

for some n0, then there exists a real number κ < k such
that pw (n) ≤ κn for all n sufficiently large.

S. Ferenczi, Complexity of sequences and dynamical systems,
Discrete Mathematics 206 (1999) 145–154.



2. Recurrent partial words

I An infinite partial word w is recurrent if every u ∈ Subw (n)
occurs infinitely often in w .

I An infinite partial word w is uniformly recurrent, if for every
u ∈ Subw (n), there exists m ∈ N such that every factor of
length m of w has u as a subword, that is, u � w [0..m − 1],
u � w [1..m], . . . .

Clearly, a uniformly recurrent partial word is recurrent.



Equivalent formulations of recurrence

Proposition
Let w be an infinite partial word. The following are equivalent:

1. The partial word w is recurrent;
2. Every subword compatible with a finite prefix of w occurs

at least twice;
3. Every subword of w occurs at least twice.



Theorem
If w is an infinite recurrent partial word with a positive but finite
number of holes, then w is not ultimately periodic.
Proof.

I Suppose w = xyyy · · · where y is a finite full word such
that |y | is the minimal period of w .

I Let j be the position of the last hole in x . Let
z = ax [j + 1..|x |)yn = avyn where n ≥ |y | and a 6= y(j ′),
where j ′ = |y | − 1 − |v | mod |y |.

I Since w is recurrent and z is a subword of w , z occurs in
u = yω. Thus, there exists i ∈ {0, . . . , |y | − 1} such that
u(i) · · ·u(i + |z| − 1) = z. Since y(i) = a 6= y(j ′), i 6= j ′.

I Set i ′ = (i + |v |+ 1) mod |y |, y1 = y(0) · · · y(i ′ − 1), and
y2 = y(i ′) · · · y(|y | − 1). We get y = y1y2 = y2y1, and so y1
and y2 are powers of a common word y ′, 1 ≤ |y ′| < |y |.

I However, u = yω = (y |y
′|)ω = ((y ′)|y |)ω = (y ′)ω is

|y ′|-periodic, which contradicts the minimality of period |y |.
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Gap function
To extend the above theorem to the case where w has infinitely
many holes we need a definition.

I Let H(n)− 1 be the position of the nth hole in an infinite
partial word w (we also say that H(n) is the hole function of
w).

I Let h(n) = H(n)− H(n − 1), for n ≥ 2, be defined as the
gap function of w .

��a�a�aaa�aaaaa�aaaaaaaaaaa�aaaaaaaaaaaaaaaaaaaa�· · ·

has holes at positions H(n)− 1 = d24(n−1)/5e − 1 and the
distance between the 5th and 6th holes is

h(6) = H(6)− H(5) = 16 − 10 = 6



The proof for the case where w has an eventually increasing
gap function is analogous to the proof when w has only finitely
many holes.

Corollary
Let w be a recurrent partial word with infinitely many holes for
which there exists N > 0 such that h(n) < h(n + 1) for all
n ≥ N. Then w is not ultimately periodic.

We need the eventually increasing gap function restriction.
Consider for example w = ab�ω, which is ultimately periodic
and recurrent.



The proof for the case where w has an eventually increasing
gap function is analogous to the proof when w has only finitely
many holes.

Corollary
Let w be a recurrent partial word with infinitely many holes for
which there exists N > 0 such that h(n) < h(n + 1) for all
n ≥ N. Then w is not ultimately periodic.

We need the eventually increasing gap function restriction.
Consider for example w = ab�ω, which is ultimately periodic
and recurrent.



Recurrence function
Let w be an infinite partial word. We define Rw (n), the
recurrence function of w , to be the smallest integer m such that
every factor of length m of w contains at least one occurrence
of every subword of length n of w .

Theorem
Let w be a uniformly recurrent infinite full word. Then the
following hold:

1. Rw (n + 1) > Rw (n) for all n ≥ 0;
2. Rw (n) ≥ pw (n) + n − 1 for all n ≥ 0;
3. Rw (n) ≥ 2n for all n ≥ 0 if and only if w is not of the form

xω for any non-empty finite word x.

J.-P. Allouche and J. Shallit, Automatic Sequences: Theory,
Applications, Generalizations, Cambridge University Press,
2003.



Basic properties of the recurrence function

Theorem
Let w be a uniformly recurrent infinite partial word. Then the
following hold:

1. Rw (n + 1) > Rw (n) for all n ≥ 0;
2. If for each n > 0 there exists an index i such that w [i ..i + n)

is a full word, then Rw (n) ≥ pw (n) + n − 1 for all n ≥ 0;
3. If w has a positive finite number of holes or an eventually

increasing gap function, then Rw (n) ≥ 2n for all n ≥ 0.



Uniformly recurrent partial words with finitely many holes
cannot achieve maximal complexity.

Theorem
Let w be a uniformly recurrent infinite partial word with finitely
many holes. Then there exists N such that pw (n) < kn for all
n ≥ N, where k is the alphabet size.

The same is true for uniformly recurrent partial words with
eventually increasing gap functions. We need this restriction
since w = �ω is uniformly recurrent and achieves maximal
complexity.

Corollary
Let w be a uniformly recurrent infinite partial word with
eventually increasing gap function. Then there exists N > 0
such that pw (n) < kn for all n ≥ N, where k is the alphabet size.



Uniformly recurrent partial words with finitely many holes
cannot achieve maximal complexity.

Theorem
Let w be a uniformly recurrent infinite partial word with finitely
many holes. Then there exists N such that pw (n) < kn for all
n ≥ N, where k is the alphabet size.

The same is true for uniformly recurrent partial words with
eventually increasing gap functions. We need this restriction
since w = �ω is uniformly recurrent and achieves maximal
complexity.

Corollary
Let w be a uniformly recurrent infinite partial word with
eventually increasing gap function. Then there exists N > 0
such that pw (n) < kn for all n ≥ N, where k is the alphabet size.



When we assume the usual restrictions on w , we find a strong
relationship between w and its various completions ŵ .

Proposition
Let w be an infinite partial word having a finite number of holes
or an eventually increasing gap function. Then w is recurrent if
and only if every completion ŵ is recurrent.



3. Completions of infinite partial words

We will consider the relationship between the complexity of an
infinite partial word w and the complexities of its various
completions ŵ .

I When does there exist a completion ŵ attaining maximal
complexity, i.e. attaining the complexity of w?

I How close can the complexity of a completion ŵ come to
the complexity of w?

I How close is too close?

It turns out that these questions are intimately related to the
notion of recurrence.



Theorem
Let w be an infinite recurrent partial word. Then there exists a
completion ŵ of w such that Sub(w) = Sub(ŵ).

Proof.
I The set Sub(w) is countable, so choose some

enumeration of its elements x0, x1, x2, . . ..
I Choose n0 so that x0 � w [0..n0].
I Since x1 occurs infinitely often in w , we can find some

n1 > n0 so that x1 � w(n0..n1].
I Similarly we can find some n2 > n1 so that x2 � w(n1..n2]

and so on for each xi .
I We complete w [0..n0] so that it contains x0 as a subword,

w(n0..n1] so that it contains x1, and so on to get ŵ .
I By construction Sub(w) ⊂ Sub(ŵ) and we have

Sub(ŵ) ⊂ Sub(w).



I The condition that w be recurrent is sufficient for there to
exist a completion ŵ with Sub(ŵ) = Sub(w).

I In the case where w has infinitely many holes, this turns
out also to be necessary.

Theorem
Let w be a partial word with infinitely many holes. Then w is
recurrent if and only if there exists a completion ŵ such that
Sub(w) = Sub(ŵ).



Proof.
I We have already shown the direction where we assume w

to be recurrent.
I So suppose there exists a completion ŵ such that

Sub(w) = Sub(ŵ).
I We show that the prefix of length H(n)− 1 of ŵ occurs

twice for every n ≥ 1.
I Choose a ∈ A such that a 6= ŵ(H(n)− 1). Then

v = ŵ [0..H(n)− 1)a ∈ Sub(w) = Sub(ŵ). Hence v must
occur in ŵ but cannot occur as a prefix. Thus there exists
i > 0 such that ŵ [i ..i + H(n)) = v . But then
ŵ [i ..i + H(n)− 1) = ŵ [0..H(n)− 1).

I Thus every prefix of ŵ occurs twice and thus ŵ is recurrent
and since Sub(w) = Sub(ŵ), w is recurrent as well.



I The condition that w has infinitely many holes is really
needed in the previous theorem.

I Consider w = �aω and ŵ = baω. Then Sub(w) = Sub(ŵ)
but w is not recurrent since b occurs only once.

I Note however that σ(w) is recurrent.

I This holds more generally but we need to introduce a new
definition.



An infinite partial word w is ultimately recurrent if there exists
an integer p ≥ 0 such that σp(w) is recurrent.

Corollary
Let w be an infinite partial word with at least one hole. If there
exists a completion ŵ of w such that Sub(w) = Sub(ŵ), then
w is ultimately recurrent. In fact σH(1)(w) is recurrent, where
H(n) is the hole function.



I RSubw (n) denotes the set of recurrent subwords of length
n of a partial word w .

I RSub(w) =
⋃

n≥1 RSubw (n).
I rw (n) = |RSubw (n)|.
I dw (n) = pw (n)− rw (n) counts the number of non-recurrent

subwords of length n.

The dw (n) function, which is non-decreasing, is important when
studying ultimate recurrence.



Ultimate recurrence

The following proposition captures the fact that in an ultimately
recurrent partial word with finitely many holes almost every
subword is recurrent.

Proposition
Let w be an infinite partial word with finitely many holes. Then
w is ultimately recurrent if and only if dw (n) is bounded.

The case when w has infinitely many holes is markedly
different. In particular dw (n) cannot be positive and bounded.

Proposition
Let w be a partial word with infinitely many holes. Then dw (n)
is either identically zero or unbounded.



Ultimate recurrence

The following proposition captures the fact that in an ultimately
recurrent partial word with finitely many holes almost every
subword is recurrent.

Proposition
Let w be an infinite partial word with finitely many holes. Then
w is ultimately recurrent if and only if dw (n) is bounded.

The case when w has infinitely many holes is markedly
different. In particular dw (n) cannot be positive and bounded.

Proposition
Let w be a partial word with infinitely many holes. Then dw (n)
is either identically zero or unbounded.



If w is ultimately recurrent, then intuitively we expect w to have
a large proportion of recurrent subwords.

Proposition
Let w be an ultimately recurrent infinite partial word. Then there
exists a constant C such that rw (n) ≤ pw (n) ≤ Crw (n) for all n
sufficiently large. In other words, pw (n) = Θ(rw (n)).

Since we can always find a completion that contains all the
recurrent subwords, we have the following.

Corollary
Let w be an ultimately recurrent infinite partial word. Then there
exists a completion ŵ such that pw (n) = Θ(pŵ (n)).



If w is ultimately recurrent, then intuitively we expect w to have
a large proportion of recurrent subwords.

Proposition
Let w be an ultimately recurrent infinite partial word. Then there
exists a constant C such that rw (n) ≤ pw (n) ≤ Crw (n) for all n
sufficiently large. In other words, pw (n) = Θ(rw (n)).

Since we can always find a completion that contains all the
recurrent subwords, we have the following.

Corollary
Let w be an ultimately recurrent infinite partial word. Then there
exists a completion ŵ such that pw (n) = Θ(pŵ (n)).



The converse of the previous proposition does not hold. There
exist partial words with infinitely many holes such that

I pw (n) is linear;
I rw (n) is linear;
I w is not ultimately recurrent.

We simply can consider words w that consist entirely of a’s and
�’s, with hole function H(n) = dαne where α > 2 is a real
number.

It is easy to check that rw (n) = n + 1 in this example.



Suppose w is a partial word with infinitely many holes.

I If ŵ is a completion of w , then pŵ (n) ≤ pw (n).
I If pŵ (n) = pw (n), then w is recurrent.
I Next best we can hope for is “off by a constant” complexity,

i.e. pw (n) ≤ pŵ (n) + C for all n > 0 and some constant C.
I This cannot happen in general, if pw (n) ≤ pŵ (n) + C for all

n > 0 and some constant C, then pw (n) = pŵ (n) and w
must be recurrent.



Proposition
Let w be a partial word with infinitely many holes. If ŵ is a
completion of w such that pw (n) ≤ pŵ (n) + C for all n > 0 and
some constant C, then Sub(w) = Sub(ŵ) and thus
pw (n) = pŵ (n).

In fact we can generalize the proposition, needing to stay close
only for arbitrarily large n.

Corollary
Let w be a partial word with infinitely many holes. Suppose
there exists a constant C such that for each N > 0 there exists
a completion ŵ such that pw (n) ≤ pŵ (n) + C for all n ≥ N.
Then pw (n) = pŵ (n) and w is recurrent.



Proposition
Let w be a partial word with infinitely many holes. If ŵ is a
completion of w such that pw (n) ≤ pŵ (n) + C for all n > 0 and
some constant C, then Sub(w) = Sub(ŵ) and thus
pw (n) = pŵ (n).

In fact we can generalize the proposition, needing to stay close
only for arbitrarily large n.

Corollary
Let w be a partial word with infinitely many holes. Suppose
there exists a constant C such that for each N > 0 there exists
a completion ŵ such that pw (n) ≤ pŵ (n) + C for all n ≥ N.
Then pw (n) = pŵ (n) and w is recurrent.



I We can do better than the previous corollary.
I The proof relies on the fact that the holes introduce

“variety”. Thus if pŵ (n) is too close to pw (n), then w is
recurrent.

Proposition
Let w be an infinite partial word with hole function H(n) and let
ϕ be an increasing function. If for each N > 0 there exists a
completion ŵ such that pw (n) ≤ pŵ (n) + ϕ(n) for all n ≥ N and
limn→∞

ϕ(H(n))
kn = 0, then pw (n) = pŵ (n) and w is recurrent.



I Another question is how pŵ (n) relates to rw (n).
I If no completion has a complexity too much greater than

rw (n), then w must be ultimately recurrent.

Theorem
Let w be an infinite partial word. Then w is ultimately recurrent
if and only if for each completion ŵ there exists a constant C
such that pŵ (n) ≤ rw (n) + C for all n > 0.

If w is ultimately recurrent, then the same C works for all
completions, in other words the bound is uniform across
completions.



4. Conclusion

I Completions can achieve complexities equal (or “close”) to
that of the original partial word if and only if the word is
recurrent or ultimately recurrent.

I How close pŵ (n) can be to pw (n) without w being
recurrent depends on the density of the holes in w .

I The slower H(n) grows the farther away a non-maximal
completion complexity pŵ (n) must be from pw (n).

I There does not, in general, appear to be a relation
between rw (n) and pw (n).

I For each 0 < δ < 1, we can find a partial word w with
infinitely many holes such that

limn→∞
rw (n)
pw (n) = δ
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